
LA-UR-19-25748
Approved for public release; distribution is unlimited.

Title: Measurement Error Variance Estimation in Gamma-Spectroscopy Data using
FRAM

Author(s): Burr, Thomas Lee
Sampson, Thomas
Vo, Duc Ta

Intended for: Report

Issued: 2019-06-20



Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001.  By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes.  Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy.  Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.



1 
 

Measurement Error Variance Estimation in Gamma-Spectroscopy Data using FRAM 

Tom Burr (CCS-6), Tom Sampson (Sampson Professional Services), Duc Vo (NEN-1) 

Abstract 

The FRAM gamma-ray isotopic analysis code has recently been applied to four Pu data sets and four 
U data sets, each with relatively well-characterized standard items, in order to estimate the variances 
of random errors and of item-specific systematic errors. Assay results are available for Pu238, Pu239, 
Pu240, Pu241, Pu242 (operator entered, not independently measured), Am241, Specific Power, and 
Pu240eff.  For the four U data sets, results are available for the measurands U234, U235, U236 
(operator entered, not independently measured), and U238. For example, in Pu data set 1, there are 33 
standard reference Pu items, which have well-known nominal/true values (except for a few items).  
FRAM was used to make approximately 15 repeat measurements for each of the 33 items, so 
empirical standard deviations can be calculated. In addition, FRAM internally estimates its random 
error variance using propagation of variance, as explained in [1]. This paper applies analysis of 
variance (ANOVA) to separately estimate the repeatability standard deviation and the standard 
deviation of the item-specific biases 𝛿" in each of the 8 data sets. 

1.Introduction and Background 

The FRAM (Fixed-energy Response-function Analysis with Multiple Efficiencies method) gamma-
ray isotopic analysis software [1] has been used to analyse gamma-spectroscopy data taken with a 
high resolution (High purity Germanium, HPGe) detector. FRAM has recently been applied to four Pu 
data sets and four U data sets. In Pu data set 1, there are 33 standard reference Pu items, which have 
well-known nominal/true values except in a few cases as noted.  For the four Pu data sets, results are 
available for the measurands Pu238, Pu239, Pu240, Pu241, Pu242, Am241, Specific Power, and 
Pu240eff.  For the four U data sets, results are available for the measurands U234, U235, U236, U238. 

Uncertainty quantification (UQ) can be approached from first physical principles (“bottom-up”) or 
empirically (“top-down”) [2-4]. This paper presents top-down analyses four Pu data sets and four U 
data sets collected with a HPGe detector and analysed with FRAM [1]. Analysis of variance 
(ANOVA) is applied to separately estimate the relative standard deviation (RSD) among repeated 
measurements of the same item, and the RSD of the item-specific biases [5-7].  All eight data sets can 
be regarded as being repeated measurements on standards. The nominal (“true”) values of each 
standard “item” is available (based on mass spectrometry).  

Data set 1 of 8 (Pu) has 33 items, with approximately 15 repeated measurements per item for a total of 
490 measurements.  To illustrate, Figure 1 is the 490 measurements of Pu239 plotted as (FRAM-
Massspec)/Massspec =   (M-T)/T with the mass spectrometry measurement regarded as the true (T) 
value for each of the 33 (33= 6 x 5 + 3) items in data set 1. The average value of (M-T)/T for each 
item is an estimate of the item-specific bias and is plotted as a horizontal line. Note from informal 
assessment of Figure 1 that the standard deviation (SD) of the item-specific biases (approximately 
equal to the SD of the between-item means; see Section 2) is similar in magnitude to the repeatability 
SD. The ANOVA-based estimate of the standard deviation of the item-specific biases 𝛿" is given in 
Appendix 1, and the ANOVA procedure is described in Section 2. Figure 2 plots the empirical 

standard deviation versus the reference value for each of the 8 

measurands.  The value of  for Pu242 is 0 because the “measured” value is operator-entered using 
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the reference “true” value. All other  values increase with the reference value, indicating that a 
multiplicative error model is appropriate, except for Pu239, where decreases as the reference value 
increases. Figure 3 is the same as Figure 2, but plots FRAM’s estimated SD (using variance 
propagation, see [1,2]) versus the reference value. FRAM’s estimate of the SD includes some error 
sources in addition to those from Poisson variation. For example, in data set 1, the average ratio (over 
all 8 measurands except for Pu242) of the observed (empirical) SD to FRAM’s estimated SD is 0.91, 
and an approximate 95% confidence interval is (0.82, 0.99), indicating that the empirical SD is 
slightly smaller than FRAM’s estimated of the SD. Note that Pu242 is entered by the FRAM operator, 
so any “errors” are due to rounding, and so the Pu242 results are included here only for completeness.  

Figure 4 is the estimation error (FRAM estimate – nominal value) versus the reference value. Figure 5 
is the same as Figure 4, except it plots the relative estimation error (estimated relative bias) and 
indicates the sample identity using the integers 1 to 33. The item-specific bias tends to have larger 
magnitude as the reference value increases, except for Pu239 (ignore Pu242 here because Pu242 is 
entered by the operator). Figure 6 plots the estimated ratio #$

#%
 for each of the 4 Pu data sets with 8 

measurands.  Figure 7 is the same as Figure 6, but for each of the 4 U data sets with 4 measurands. 

ŝ
ŝ
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Figure 1. The 490 measurements of Pu239 plotted as (FRAM-Massspec)/Massspec = (M-T)/T with 
massspec regarded as the true (T) value for each of the 33 (33= 6 x 5 + 3) items in data set 1. The 
average value of (M-T)/T for each item is an estimate of the item-specific bias and is plotted as a 
horizontal line. The SD of the item-specific biases is similar in magnitude to the repeatability SD. 
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Figure 2. The empirical standard deviation (SD) vs. the reference value for each of the 8 measurand 
in data set 1. 
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Figure 3. The FRAM-based estimate of standard deviation (SD) versus the reference value for each 
of the 8 measurands in data set 1. 
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Figure 4. The item-specific bias versus the reference value for each measurand (0 for Pu242); the 
plotting symbols are the integers 1 to 33, which identify the reference standard in data set 1. 
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Figure 5. The relative item-specific bias versus reference value (0 for Pu242), and the plotting 
symbols are the integers 1 to 33, which indicate the identity of the reference standard in data set 1. 
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Figure 6. Estimate of the ratio #$
#%

 for each of the 4 Pu data sets with 8 measurands.   

 

Figure 7. Estimates of the ratio #$
#%

 for each of the 4 U data sets with 4 measurands.   

2. Measurement Error Modelling and Variance Component Estimation 

Most of the measurands exhibit larger SD and item-specific bias as the reference value increases, so a 
reasonable measurement error model is 

                                                                    (1) 

where for measurement j of the ith standard, is the measurement result , is the true value, is 

the long-term bias, is the short-term bias associated with item i, and is a random error.  In this 

Mij = µi(1+ B + Si + Rij ),

Mij iµ B

iS ijR
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case , the relative difference between the FRAM measurement and the nominal value  

( ) provided by mass spectrometry.  The very small measurement errors in mass spectrometry 
are assumed to be 0 here, resulting in a slight over-estimate of the error RSDs in FRAM. For 
completeness, Grubbs’ estimator was also applied [6], accounting for errors in mass spectrometry; the 
Grubbs’-based error RSD estimates are very close to those given below using random effects analysis 

of variance (ANOVA [5]) applied to . 

In Eq. (1), is often assumed to have a normal distribution with mean 0 and variance denoted 

and that  for all items i = 1, 2., …, g. The normality assumption is not 

important for variance component estimation, but is important in assessing the uncertainty in the 
variance component estimates.  Regarding notion, the “=” in Eq. (1) should be regarded as “equals in 
distribution,” where the random variable X has the same distribution as a constant plus the 

sum of two random variables ; and, 𝛿 denotes a relative standard deviation 

while	𝜎	denotes an absolute standard deviation. A t-test for overall bias B in Eq. (1) suggests that 
there is no need for an overall bias term for any measurand (except perhaps for Pu241), so B will be 
assumed to be zero here and throughout. Item-specific bias is often not negligible, and in that case, a 
laboratory must expend considerable effort to assess and estimate the variance of item-specific bias, 

, the short-term bias associated with item i. 

Model (1) implies that there is a need to partition error variance into “within” (W) items and 
“between” (B) as in 

                 (2). 

In the experimental data analysed here, the numbers of measurements per item ni in Eq. (2) vary from 
5 to 25, with an average of approximately 15, with a total of 490 measurements of the 8 measurands 
for the 33 items.  

The within-item replicate variance in Eq. (1) can be estimated using the observed sample variances 
as those shown in Figure 2. Because the sample sizes ni in Eq. (2) vary from 5 to 25, a weighted 
average should be used. And, can be estimated using the variance of the estimated item-specific 
biases in Figure 4. However, the estimated item-specific biases include the effect of random error 
variance, so that must be subtracted off. More formally, it can be shown that 

has expected value and that has expected value 

where  and  . 
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Therefore, MSW = 𝛿,-. is an unbiased estimate of  and is an unbiased estimate 

of . And, in standard one-way random effects ANOVA [4-7], if the absolute or relative variances 
are not constant, then it is straightforward to show that MSW is an unbiased estimate of the average 

relative variance and is an unbiased estimate of the average relative variance 

[7].   Figure 2 indicates the possibility that some of the SDs are outliers and Figures 4 and 5 

indicate the possibility that some of the item-specific biases are outliers. And, it is known, for 
example, that the reference values (provided by mass spectrometry) for items 3, 4, and 11 (items A1-
92, A1-86, and STD117) probably need revision for Pu238, as the corresponding FRAM 
measurements seem to suggest. Also, the observed sample variances that are used to empirically 
estimate are assumed to arise from independent replicate measurements.  

Recall that because most of the measurands appear to exhibit multiplicative model behaviour such as 

in Eq. (1), it is helpful to apply ANOVA scaled data , and assume that the reference 

values are so close to that uncertainty in the reference values can be ignored. On this basis, the 
percent relative standard deviations of the item-specific estimated biases for the 8 measurands (recall 
that measurand 5 of 8 is Pu242, which is given here only for completeness) are 4.12, 0.20, 1.10, 0.59, 
0.09, 1.42, 0.24, and 1.02, respectively. And, the averages of the observed relative standard deviations 
are 4.1 (1.9), 0.20 (0.19), 1.1 (1.1), 0.59 (0.52), 0.09 (0.04), 1.4 (0.98), 0.24 (0.16), 1.0 (1.0), 
respectively, where the values in parentheses are from a robust version (by trimming outliers toward 
the median) of the observed standard deviations. The averages of the predicted relative standard 
deviations are 3.9, 0.18, 1.50, 0.36, 0.09, 1.8, 0.36, and 1.5, respectively. 

Using to estimate , the resulting estimates are 4.0 (1.8) , 0.2 (0.09), 1.1 (1.1), 

0.56 (0.48) , 0.09 (0.04) , 1.5 (0.96), 0.23 (0.15), and 0.99 (0.97), respectively, where a robust version 
(less sensitive to possible outliers) of each estimate is given in parenthesis. 

Using MSW to estimate  the resulting empirical estimates are 3.3 (3.1), 0.2 (0.2), 1.6 (1.5), 

0.34 (0.33), 0 (0), 1.4 (1.4), 0.26 (0.26), 1.5 (1.4), where a robust version of each estimate is given in 

parenthesis. Using MSW to estimate  the resulting estimates based on FRAMs estimated 

RSDs are 4.1, 0.19, 1.6, 0.36, 0.27, 1.9, 0.37, and 1.5, respectively.  

The largest (of 33) RSDs in the standards (for the first 6 of 8 measurands; measurands SpecPow and 
Pu240eff do not have uncertainties assigned to the standards) are 0.11, 0.0002, 0.003, 0.03, 0.08, and 
0.13, respectively, so errors in the nominal values were ignored here. 

The bootstrap is one option to estimate the uncertainty in the estimates and  [5] in which the 
within-item measurements and the 33 item-specific biases are sampled with replacement to mimic 
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repeating the experiment (which would consist of taking 490 measurements of another set of 33 
items). For example, for the empirical estimates 3.3, 0.2, 1.6, 0.34, 0, 1.4, 0.26, 1.5 given above to 

estimate , the 95% bootstrap confidence intervals are (2.87, 3.67), (0.19,0.25), (1.39,1.66), 

(0.31, 0.35), (0,0), (1.22, 1.55),(0.23, 0.27), and (1.31,1.57), respectively. And, for the estimates 4.0, 

0.2, 1.1, 0.56, 0.09, 1.5, 0.23, and 0.99 given above for the estimate , the, the 95% bootstrap 

confidence intervals are  (1.7, 5.8), (0.02, 0.17), (0.53, 1.44), (0.32, 0.73), 0.03,0.1), 
(0.5,1.7),(0.08,0.26) and (0.51,1.33), respectively.    

3.Summary 

Section 2 gave estimates and for the first (of four) Pu data sets. Appendix 1 lists the estimates 

and for the 8 measurands for the 4 Pu data sets and for the 4 measurands the 4 U data stes. As in 
[4], there is clear evidence that the true value of 𝛿"  is non-zero, and often is substantial, as in Figures 
6 amd 7. Future work will include Bayesian ANOVA [8,9]; however, the sanple sizes are large in all 8 
data sets, so most Bayesian analyses will agree closely with the frequentist analyses presented here. 

Appendix 2 gives a littlle more detail about FRAM’s current UQ approach [10] in the context of two 
main findings of this paper: item-specific bias is non-negligible, and on average over all 8 data sets, 
FRAM’s estimate of  is approximately 10% larger than the empirical estimate .  
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Appendix 1. Summary of estimated RSDs in % for data sets 1:8.  
For the Pu cases: columns 2 to 9  are: 238    239    240    241    242    241 Am    Spec Pow    Pu240 Eff 
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For the U cases: columns  2 to 4  are  234        235       236        238     
Column 2 :    

Column 3 :  
Column 4 is the effective random error (repeatability and item-specific bias) RSD (“the bottom line”), 

𝛿,/ = 0𝛿,-. + 𝛿,"..	 Note that the estimate 𝛿,/is largest for measurand 1 which is Pu238 (not 

surprising).  Column 5 is the standard deviation of the relative differences with 

 calculated using all measurements (the left hand side of Eq. (1)). Column 6 is the 

root mean squared error .  Appendix 1 results are a high level summary, with ANOVA 

applied to each full data set with no outliers removed (except for data sets 2 and 5 because the outliers 
were strong enough to have a large influence on the results), and no exploratory data analysis,  
Column 4 is the “bottom line” and columns 5 and 6 are given for completeness. Data sets 1-4 are Pu 
and 5-8 are U. For the four Pu data sets, the 8 results are for the measurands Pu238, Pu239, Pu240, 
Pu241, Pu242 (operator entered, not independently measured so NA=not available is entered), 
Am241, Specific Power, and Pu240eff. For the four U data sets, the 4 results are for the measurands 
U234, U235, and U236 (operator entered, not independently measured), U238. 

Data set 1: Estimated RSDs in %. Plutonium, Planar Detector, 120–460 keV Analysis These 
estimated RSDs include the 3 mild outliers seen in Figures 4 and 6 (due to most likely having a 
slightly bad nominal value for items for items 3, 4, and 11 (items A1-92, A1-86, and STD117). 

       
    

1 3.4 4.5 5.6 5.6 5.6 
2 0.2 0.2 0.3 0.3 0.3  
3 1.6 1.1 1.9 1.9 1.9  
4 0.3 0.6 0.7 0.6 0.6  
5 NA NA NA NA NA 
6 1.4 1.5 2.1 2.0 2.1  
7 0.3 0.2 0.3 0.3 0.3  
8 1.5 1.0 1.8 1.8 1.8  

 
 

Data set 2: Estimated RSDs in %. Plutonium, Coaxial Detector, 120–460 keV Analysis.  

       
    

1 7.0 2.8 7.6 7.6 7.7 
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2 0.3 0.2 0.3 0.3 0.3 
 

3 1.9 1.7 2.6 2.6 2.6 
 

4 0.4 0.6 0.7 0.7 1.0 
 

5 NA NA NA 
 

NA NA  

6 0.7 1.0 1.2 1.2 1.3 
 

7 0.3 0.3 0.4 0.4 0.4 
 

8 1.8 1.7 2.5 2.5 2.5 
 

 
Data set 3: Estimated RSDs in %. Plutonium, Coaxial Detector, 180–1010 keV Analysis 

       
    

1 8.4 6.3 10.5 10.4 10.4 
2 0.4 0.2 0.5 0.5 0.5 
3 2.8 1.5 3.1 3.1 3.2  
4 0.6 0.5 0.8 0.8 0.9  
5 NA NA NA NA NA 
6 0.7 0.8 1.0 1.0 1.0  
7 0.6 0.4 0.7 0.7 0.7  
8 2.6 1.4 3.0 3.0 3.0  

 
Data set 4: Estimated RSDs in %. Plutonium, Planar Detector, 60– keV Analysis 
 

       
    

1 3.7 4.4 5.7 5.7 5.8  
2 0.1 0.1 0.2 0.2 0.2  
3 0.9 0.8 1.2 1.2 1.3  
4 0.3 0.5 0.6 0.6 0.6  
5 NA NA NA NA NA  
6 1.0 1.2 1.5 1.5 1.5  
7 0.2 0.2 0.3 0.3 0.3  
8 0.9 0.8 1.2 1.2 1.3 

 
Data set 5: Estimated RSDs in %. Low-Enriched U, Coaxial Detector, 120-1010 keV Analysis. Note 
the large RSD estimates in U234 (measurand 1). The U234 cannot be reliably measured when the 
U235 fraction is small, such as 1%. So, a separate ANOVA was performed for U234 without the 
0.31% and 0.71% U235 items. The results are in the second set of values in row 1, for the 18 of 23 
items for which the  U235 fraction is larger than 0.71% (so, for example, 20.4% RSD is reduced to 
5.7% RSD). 
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1 20.4 
5.7 

10 
2.0 

22.8 
6.1 

22.7 
6.1 

23.4 
6.5 

2 2.1 
1.7 

1.3 
1.3 

2.5 
2.2 

2.5 
2.2 

2.7  
2.4 

3 NA NA NA NA Na  
4 0.3 

0.3 
0.3 
0.3 

0.4 
0.4 

0.4 
0,4 

0.4  
0.4 

 

Data set 6: Estimated RSDs in %. High-Enriched U, Coaxial Detector, 120-1010 keV Analysis, with 
item 3 omitted because item 3 does not have the correct nominal value. 

       
    

1 2.6 2.0 3.2 3.2 4.6 
2 1.0 1.1 1.5 1.4 1.8  
3 NA NA NA NA NA  
4 1.3 2.8 3.1 3.0 3.6  

 

Data set 7: Estimated RSDs in %.  Low-Enriched U, Planar Detector, 60-250 keV Analysis 

This data is new was not analyzed when the v4.2 analysis was done [4]. As in Data set 5, The U234 
cannot be reliably measured when the U235 fraction is small, such as 1%. So, a separate ANOVA was 
performed for U234 without the 0.31% and 0.71% U235 items. The results are in the second set of 
values in row 1, for the 7 of 24 items for which the  U235 fraction is larger than 0.71% (so, for 
example, 13.2% RSD is reduced to 3.5% RSD). 

 
       

    

1 13.2 
3.5 

2.8 
2.0 

13.5 
4.0 

13.5 
4.0 

13.5 
4.1 

2 1.7 
0.7 

1.2 
0.8 

2.1 
1.0 

2.1 
1.0 

2.1  
1.2 

3 NA NA NA NA NaN  
4 0.1 

0.1 
0.2 
0.3 

0.2 
0.3 

0.2 
0.3 

0.3  
0.3 

 

Data set 8: Estimated RSDs in %.  High-Enriched U, Planar Detector, 60-250 keV Analysis 
This data is new was not analyzed when the v4.2 analysis was done [4]. 

       
    

1 1.7 0.9 1.9 1.9 2.2 
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2 1.1 0.80 1.4 1.4 1.6  
3 NA NA NA NA NA 
4 17.5 5.2 18.4 18.2 18.3  

 
The total number of repeat measurements in data sets 1:8 are: 490, 729, 826, 296, 282, 499, 472, 301, 
respectively. 
 
The number of repeats for data set 1  for 33 items are: 
 15 11 20 20  6 15 20 15 15 15 15 25  5 15 15 15  6  6 15 15  8 15 14 20 14 15 15 15 15 15 20 20 20 
The number of repeats for data set 2 (45 items): 
 20 20 10 10  9 10 10 10 11 30 11 20 21 10 21 11 20 10 10 20 29 10 21 11 10 
10 20 21 26 10 20 10 20 26 10 10 10 20 21 21 21 21 10 21  26 
The number of repeats for data set 3 (53 items): 
20 20 10 10  9 10 10 11 10 11 11 30 11 11 11 20 21 10 21 11 11 20 10 10 20 
29 10 21 11 11 10 10 20 21 26 10 20 10 20 26 10 11 10 10 20 21 21 21 21 10 
21 20 26 
The number of repeats for data set 4 (23 items): 
10 14 14 10 10 10 14 10 14 10 14 10 14  8 24 15 14  8  9 15 21 15 13 
The number of repeats for data set 5 (22 items): 
8  8 22 14 15 15  8  8  8  8 12 13 15 21 15  9  8 14 15 24  8 14 
The number of repeats for data set 6 (34 items): 
15 15 11 20 20  6 15 20 15 15 15 15 25  5 15 15 15  6  6 15 15  8 15 14 14 14 15 15 15 15 15 20 20 20 
The number of repeats for data set 7 (24 items): 
19 20 17 19 15 17 27 16 18 29 16 14 26 16 13 21 23 21 28 23 21 20 17 16 
The number of repeats for data set 8 (16 items): 
17 20 21 23 19 17 16 19 16 20 20 16 12 23 12 30 

The t-test for overall bias: 
> t.test(means) 
t = -1.9227, df = 32, p-value = 0.06345 
alternative hypothesis: true mean is not equal to 0 
95 percent confidence interval: 
 -0.0066651433  0.0001922504 
sample estimates: 
   mean of x  
-0.003236446 
# result: no overall bias 
 
To generate Tables 1,2,3,6 for the 8 individual measurands (and similarly for Tables 4,5,7,8): 
for(i in 1:8) { 
dtemp <- ts1d[,i] 
cat(c(i,round(estvars(groups=temp.indices,d=dtemp)[1:5]^.5*100,3)),"\n") 
} 
 
1 3.384 4.491 5.624 5.568 5.621  
2 0.225 0.209 0.307 0.305 0.309  
3 1.581 1.081 1.915 1.905 1.907  
4 0.341 0.557 0.653 0.646 0.646  
5 0 0.085 0.085 0.084 0.089  
6 1.432 1.486 2.063 2.047 2.077  
7 0.261 0.227 0.346 0.343 0.346  
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8 1.49 0.986 1.786 1.778 1.784  
 
# The R function estvars0 implements the one-way ANOVA described in Section 2; it gives 
essentially the same results as random effects ANOVA in R using lmer() as shown next. 
 
estvars = function(groups,d) { # groups vector for group memberships; d for relative differences 
N = length(d); ngroups =length(unique(groups)) 
vard.vec = numeric(ngroups); meand.vec = numeric(ngroups); n.vec = numeric(ngroups) 
temp.indices = as.numeric(names(table(groups))) 
for(i in 1:ngroups) { 
indices = (1:N)[groups==temp.indices[i]] 
n.vec[i] =length(indices) 
dtemp =d[indices] 
vard.vec[i] = var(dtemp) 
meand.vec[i] = mean(dtemp) 
} 
dmean = mean(d) 
temp1 = sum(n.vec*(meand.vec-dmean)^2) 
temp2 = sum((n.vec-1)*vard.vec)/sum(n.vec-1) 
temp3 =N*(ngroups-1)*(temp1/(ngroups-1) - temp2)/(N^2 - sum(n.vec^2)) 
c(temp2,temp3,temp2+temp3,var(d),mean((d)^2)) 
} 
 
If the group sample sizes are equal, estvars() results agree with lmer() results. If not, then there are 
very small, negligible differences between estvars() and lmer() results. The lmer() function 
implements restricted maximum likelihood [6], while estvars() is a method of moments estimator. 
tempgroups = c(1,1,1,1,2,2,2,2,3,3,3,3) 
#tempd =  c(rnorm(n=4),rnorm(mean=1,n=4),rnorm(mean=2,n=6)) 
# tempd rounded:   
tempd = c(-0.40,  1.22, -0.32, -1.38,  0.49,  0.72,  1.69,  1.47,  1.15,   4.31,  2.00,  1.46) 
temp = lmer(tempd ~ 1 + (1 |tempgroups)) 
summary(temp)  
Random effects: 
 Groups     Name        Variance Std.Dev. 
 tempgroups (Intercept)     1.209    1.099    
 Residual                            1.178    1.085    
> round(estvars0(groups=tempgroups,d=tempd),3) 
[1] 1.178 1.209 2.387 2.057 2.955. # the 1.209 and 1.178 agree with lmer() results. 
 

Appendix 2.   Version 4.2 versus version 5.2 of FRAM; Uncertainties in the Reference items, 
and Possible Reasons for Item-specific Bias; FRAMs Bottom-up Variance Estimation 

Appendix 2 addresses three main topics: (1) version 4.2 versus version 5.2 of FRAM, (2) uncertainties 
in the reference items, (3) possible reasons for item-specific bias, and (4) error variance estimation 
provided in version 5.2. 

First, the RSDs in this report for v5.2 of FRAM are acceptably small, but slightly larger than those 
reported in [4] for version 4.2 of FRAM. One feature that is different between v4.2 AVOVA data and 
V5.2 data is how the tailing constants are treated.  In v4.2 analysis the tail constants were fixed while 
they are free in 5.2; this might contribute to the increased variability observed in v5.2 (this report).  

Second, Table A2.1 provides notes on uncertainties assigned to the mass spectometry values 
for FRAM v5 ANOVA for data set 1. 
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Sample Name Comment on Uncertainty 
CBNM93, CBNM84, 
CBNM70, CBNM61 

Certified Reference Material from Geel.  Uncertainty listed is ½ of the 95% confidence interval 
listed on the certificate.  No corrections made for decay.  Circa mid 1980s. 

STD117, STD118, 
STD119, STD120, 
STD116 

One LANL mass spec from 1979.  Uncertainty reported as “Deviation” and it is not clear 
whether it is supposed to approximate a 1 or 2 sigma value.  Will report it as if it was 2 sigma.  
Uncertainty for this analysis is “Deviation”/2. 

CALEX 
Working Reference Material used in the DOE Calorimetry Exchange Program (now inactive).  
Isotopic composition reevaluated by NBL in 2008.  Uncertainties are ½ of their estimated 95% 
confidence limit.  No corrections made for decay. 

A1-92 
One mass spec from ORNL in 1970.  No original mass spec uncertainty information available.  I 
arbitrarily assign the same uncertainties as STD117 because its values are old (1979) and the 
isotopic distribution is similar. 

A1-86 No original mass spec or mass spec uncertainty information available.  Same uncertainty 
assignment as for A1-92 above. 

LAO225 Three analyses at two LANL labs circa 1983. Uncertainty is 1 std dev of the mean of the three 
sets of analyses. 

STD40 Averages of analyses on 4 samples at two LANL facilities in 1980-1982 time frame.  
Uncertainty is the std dev of the mean of all the analyses. 

SRPISO3,6,9,12,15 Analyses from 3 labs.  Uncertainty is the standard deviation of the mean of the three lab results. 
There are no systematic uncertainties included such as uncertainty contribution from standards 

STD121 Same material as LAO225. 

PUEU7 No uncertainty information has survived.  Uncertainty estimated as the standard deviation of a 
single measurement of the SRPISO6 sample. 

STDR3, JOO1325, 
STD8, STD6, STD3 

Assume same uncertainty as assigned for STD117.  The items are from the same era (late 1970s 
–mid 1980s and probably have the same quality routine single LANL mass spec measurement. 

LAO256 Same vintage and program as LAO225.  Use the single measurement uncertainty from LAO225.  
Double the uncertainty for Am. 

  

  

Table A2.1. Notes on uncertainties assigned to standards. None of the uncertainty assignments are 
decay corrected.  Most of the uncertainties do NOT include systematic uncertainty contributions from 
mass spectrometry calibration.  Only the CBNMs and CALEX come from recognized standards 
organizations and have statements of uncertainty supplied.  Others come from recognized mass spec 
labs and are reliable measurements but the only uncertainty data available is that from repeated 
measurements or the averages and standard deviations of measurements from several labs.  Because 
no systematic uncertainties were supplied, care has been taken not to place too much weight on 
averages from repeated measurements from labs that lead to an unrealistically small estimate of the 
measurement uncertainty.  

 Third, as in v4.2 analysis in [4], there is evidence that the RSD of item-specific bias is approximately 
the same on average as the RSD of within-item repeated measurements.  Therefore, it is useful to try 
to gain a better understanding of what factors contribute to item-specific bias. As an example of many 
possible sources of item-specific bias, there are background difficulties in the 160 keV region, partly 
due to the backscatter peak in this region. For all items, accurate peak areas are one key to a bias-free 
analysis.  The most crucial part of obtaining an accurate peak area is the ability to accurately subtract 
the background continuum from beneath the peak being analyzed.  This is relatively easy for clean, 
single peaks on a smoothly varying background.  However, if there are complex closely-spaced, 
overlapping peaks, it often becomes difficult to accurately define the background continuum beneath 
the complex because with a wide complex of peaks, spanning many keV in energy, the background 
continuum underneath the complex may have hidden structure or change shape, effects that are not 
usually visible to the naked eye. 
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As an example, analysis of Pu240 in the Plutonium, Coaxial detector, 120-460 keV region comes 
solely from a  single peak at 160.3keV (Figure A.1).   Note that there is much better resolution of this 
peak from a planar detector, leading to better peak separation, The plutonium spectra in this region 
taken with a coaxial detector usually show a global curvature.   A feature of the background 
continuum in this region is that the slope of the background continuum changes under the 160 keV 
peak complex.  There is a physical reason for this artifact—backscatter peak edges from prominent 
higher energy peaks in the plutonium spectrum.  So, as the nature of the item changes, mass, isotopic 
composition, scattering geometry, etc., the nature of the background continuum in this region 
changes. For example, compared Figure A.2 (a zoom near the 160keV region of Figure A.1) to 
Figures A.3 (the same as Figure A.2 but for an item having higher Am241 ppm (726 ppm) and A.4 
(the same as Figure A.2 but for an item with 6.30 % Pu240, 240 g Pu as PuO2, , 1757 ppm Am241). 

  

 

Figure A.1. Global curvature around 160 keV.  3.56% Pu240 
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Figure A.2 A zoom to the region near 160keV in Figure A1.1 for .  3.56% Pu240. 
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Figure A.3.  The same as Figure A.2, but for 726 ppm Am241 with the 3.56% Pu240, leading to a 
change in the slope of the background compared to Figure A.2. 

 

  
Figure A.4. The same as Figure A.2, but for 1757 ppm Am241 with the 6.30% Pu240, leading to a 
change in the slope of the background compared to Figure A.2. 

In FRAM the user has a choice of 7 different functional forms to define the background continuum 
underneath any peak region.  Typical a simple linear function is chosen in this region, but the concave 
upward shape of the global continuum in this region generally means that the net peak area results are 
biased high.  This type of changing background continuum shape can have an impact when  a single 
set of parameter file constants are applied to a wide range of samples. 

A change in the definition of the regions defining the linear background near 160 keV that is likely to 
be a main cause of the difference between the results in FRAM v4 versus the results in FRAM v5. 

Fourth, recall that FRAM’s estimated RSD is slightly larger on average than the observed within-item 
RSD (by approximately 10%). The within-item error variance estimation provided in version 5.2 is 
described in [10,11]. 

 

 

 

 


